
No Cohort Session Today

•No 3pm session (called tutorial on
ROSI) today

•approximately alternate weeks

Next week!

1

Labs (Practicals)

Continuing tomorrow

Go to the one on your schedule OR

take your chances on getting a chair

Before you log into a computer - find
your name on the seating plan.

2

Anonymous Feedback

Old test links are broken??

Coming soon

3

Python Basics Continued

4

Python Types

• Every Python value has a
type that describes what
sort of value it is

• Built-in function type
will tell you the type of
an expression

5

English Python
integer int

“real” number float
picture Picture
pixel Pixel

colour Color
string of letters str

Assignment vs Equality
• Python variables look like math variables.

• This could be Python or math:
p = 5
q = p ∗ 7

• But “=” in math means equality
 (stating a fact)
whereas “=” in Python means assignment
 (asking Python to do something)

• This makes a big difference!

1. Changeability

• In math, this is inconsistent:
 p = 5
 q = p ∗ 7
 p = q + 10

• p can’t be both 5 and 45!

• But in Python, it makes perfect sense. p starts out
referring to 5, but then changes to refer to 45.

• You can change a variable’s value as many times as
you want. You can even change its type.

• In math, this makes no sense either:
 x = x + 1
It can’t be true!

• But in Python, it makes perfect sense.
It is asking to make x refer to a something that is
one bigger.

• We say “x is assigned x + 1” or “x gets x + 1”

• Programming languages usually have different
symbols for assignment and equality.
Python uses “==” for equality.

2. Can’t tie two variables

• What does this do?
x = 37
y = x + 2
y is now 39.
x = 20
Is y now 22?

• You can’t use assignment to tie the values of two
variables together permanently.

3. Assignment is not symmetric

In math In Python

sum = a + b
they mean the

same thing

fine

a + b = sum

they mean the
same thing

illegal

Naming

11

Rules for the format of names
• There are a few rules about names of variables (and

other things we’ll see later):

• Must start with a letter (or underscore).

• Can include letters, digits, and underscores, but
nothing else.

• And case matters, by the way.
 age = 11
 aGe # Error! This is not defined.

• Valid: _moo_cow, cep3, I_LIKE_TRASH

• Invalid: 49ers, @home

Conventions for the format of names

• thEre’S a GoOD rEasON wHy WorDs haVE A
StaNDaRd caPITaLizAtIon sCHemE

• Python convention: pothole_case

• CamelCase is sometimes seen, but not for
functions and variables

• Rarely, single-letter names are capitalized: L, X, Y

• When in doubt, use lowercase_pothole

• Python doesn’t care about the content of the
names, only their format.

• For example, these are equally fine names to
Python: xx3, class_average, fraggle

• But we choose names that will be
meaningful to the humans who will read our
code.

• Eg, if you are adding something up, sum or
total is better than x.

• You will be graded on the names you pick.

Choosing good names

Expressions vs Statements
• English expressions:

 “The Prime Minister’s wife”
 “The recycling”
 “lunch”
Each refers to something.

• English sentences:
 “The Prime Minister’s wife ate pancakes.”
 “Take the recycling out, please.”
 “Is it time for lunch?”
Each states a fact, asks a question, or gives a
command.

• Python is similar . . .

• Python expressions:
 f(x+3)
 98.6 * 2
Each refers to a value.

• Python sentences (“statements”):
 temperature = 98.6
 return (x + y + z) / 3
Python statements are always commands to do
something (never statements of fact, or
questions).

• In Python, you normally make full statements, eg:

• assignment statements

• def statements

• if statements

• But the shell lets you give just an expression, and
it then shows you the value of the expression.

• So to show output in the shell, you can just give
an expression.

Producing textual output

• To show output in the editor, use print. Example:
print “Hello!”
mark1 = raw_input(“First mark: “)
mark2 = raw_input(“Second mark: ”)
print “The average is”, average(mark1, mark2)

• Comma is for printing lists of items, separated by
blanks.

• This produces the same output:
print “The average is ” + average(mark1, mark2

• Why? Because “+” can be used to glue two strings
together. We call it “concatenation.”

