No Cohort Session Today

® No 3pm session (called tutorial on
ROSI) today

® approximately alternate weeks

.’ Next week!

Labs (Practicals)

Continuing tomorrow
Go to the one on your schedule OR
take your chances on getting a chair

Before you log into a computer - find
your name on the seating plan.

Anonymous Feedback

Old test links are broken??

Coming soon

Python Basics Continued

Python Types

English Python
integer int
® Every Python value has a &
type that describes what “real” number float
sort of value it is : :
picture Picture
® Built-in function type . .
will tell you the type of Plxel Pixel
an expression colour Color
string of letters str

Assignment vs Equality

® Python variables look like math variables.

® This could be Python or math:
p=>5
q=p 7

® But “=" in math means equality
(stating a fact)

whereas “=" in Python means assighment
(asking Python to do something)

® This makes a big difference!

|. Changeability

In math, this is inconsistent:

p=>5
q=p =/
p=q+ 10

p can’t be both 5 and 45!

But in Python, it makes perfect sense. p starts out
referring to 5, but then changes to refer to 45.

You can change a variable’s value as many times as
you want. You can even change its type.

In math, this makes no sense either:
X =x+ |
It can’t be true!

But in Python, it makes perfect sense.
It is asking to make x refer to a something that is
one bigger.

We say “x is assigned x + |7 or “x gets x + |”

Programming languages usually have different
symbols for assignment and equality.
Python uses “==" for equality.

2. Can’t tie two variables

® What does this do!?
x =37
y=x+2
#y is now 39.
x =20
Is y now 22!

® You can’t use assighment to tie the values of two
variables together permanently.

3.Assignment is not symmetric

In math

In Python

sum=a+b
they mean the

same thing
a+b=sum

fine

illegal

Naming

Rules for the format of hames

® There are a few rules about names of variables (and
other things we’ll see later):

® Must start with a letter (or underscore).

® Can include letters, digits, and underscores, but
nothing else.

® And case matters, by the way.
age = | |
aGe # Error! This is not defined.
® Valid: moo cow, cep3, I LIKE TRASH

® |nvalid: 49ers, @home

Conventions for the format of names

® thEre’S a GoOD rEasON wHy WorDs haVE A
StaNDaRd caPITaLizAtlon sCHemE

® Python convention:pothole case

® CamelCase is sometimes seen, but not for
functions and variables

® Rarely, single-letter names are capitalized: L, X, Y

® When in doubt,use lowercase pothole

Choosing good names

Python doesn’t care about the content of the
names, only their format.

For example, these are equally fine names to
Python: xx3, class_average, fraggle

But we choose names that will be
meaningful to the humans who will read our
code.

Eg, if you are adding something up, sum or
total is better than x.

You will be graded on the names you pick.

Expressions vs Statements

® English expressions:
“The Prime Minister’s wife”
“The recycling”
“lunch”
Each refers to something.

® English sentences:
“The Prime Minister’s wife ate pancakes.”
“Take the recycling out, please.”
“Is it time for lunch?”
Each states a fact, asks a question, or gives a
command.

® Python is similar ...

® Python expressions:
f(x+3)
98.6 * 2
Each refers to a value.

® Python sentences (“‘statements”):
temperature = 98.6
return (x +y +z)/ 3
Python statements are always commands to do
something (never statements of fact, or
questions).

Producing textual output

® |n Python, you normally make full statements, eg:
® assignment statements
® def statements

® if statements

® But the shell lets you give just an expression, and
it then shows you the value of the expression.

® So to show output in the shell, you can just give
an expression.

To show output in the editor, use print. Example:
print “Hello!”

markl = raw input(“First mark: *)

mark2 = raw input(“Second mark: ")

print “The average 1s”, average(markl, mark2)

Comma is for printing lists of items, separated by
blanks.

This produces the same output:
print “The average is ” + average(markl, mark?2

Why? Because “+” can be used to glue two strings
together. We call it “concatenation.”

