
Strings

Finding vowels
def num_vowels(s):
 ‘’‘Return the number of vowels in str s
 Do not treat ‘y’ as a vowel.’’’

 count = 0
 for char in s:
 if char in “aAeEiIoOuU”:
 count = count + 1
 return count

Extra Lab Hours

• TA in the lab 1:30 - 3:30 today for
assignment questions

• Last chance for in-person help

• DB on the weekend

Why the fan?

Practice writing code

• reverse.py

• remove_spaces.py

String comparisons
• You can use the comparison operators on

strings.

• The comparison will be made alphabetically.

• An ordering is defined even for non-
alphabetic characters. For example:

• “!” > “,”

• But you only need to remember that:

• “a” < “b” < ... < “z”

• “A” < “B” < ... < “Z”

• “0” < “1” < ... < “9”

Indexing strings

• Allows you to extract a single character.

• The first character is at index 0.

• A negative index means to count backwards
from the end.

• Always returns a new object.

s[i]

Slicing strings

• Allows you to extract a substring in one
step.

• Always returns a new object.

• The lower bound is inclusive, but the upper
bound is not.

• If omitted, left defaults to 0, right to len(s).

s[left:right]

P I E C E O F S P A M

0 1 2 -3 -2 -1

:][:

Source: Lutz, page 134

Think of left and right as cutting the string.

Methods
• We have seen several operators for strings.

• There are not enough operators for all the
things one might want to do with strings.

• Instead, Python defines these using a special
kind of function: a method.

• Strings “own” these methods, like a module
owns its functions. So you call methods
using the same notation as calling a function
in a module:
 “hogwarts”.capitalize()
 villain = “malfoy”
 villain.capitalize()

Calling methods

• Because you provide the string using dot
notation, you don’t need to pass it as an
argument:
 villain.capitalize(villain) # Redundant!
In fact, this would cause an error.

• A method may have parameters if it needs
additional information:
 villain.startswith(“mal”)

Calling methods vs calling functions

• You need to know whether you are calling a
method or a function.

• Example: len is a function, so:
 len(s) # Fine
 s.len() # Error

• Example: lower is a method, so:
 lower(s) # Error
 s.lower() # Fine

Some string methods
• S.replace(old, new): return a string, same as S

but with all occurrences of old replaced by
new. Does not change S.

• S.count(substring): return the number of
times substring occurs in S.

• S.find(substring): return the index of the first
occurrence of substring in S, starting from
the left.

• S.startswith(substring): return True iff S
begins with the substring.

• And a very useful function: len(string)

Why are some things methods
and other things functions?

• Python could have defined len (and find etc.)
as a method or a function.

• Programmers can define their own new
kinds of objects too. (We’ll learn how later.)

• The same decision has to be made for every
operation you want to define for your new
type of object object: method or function?
There is always a choice.

So how does one decide?
• One guideline: if the operation is only

relevant to one type of object, make it a
method defined for that type of object.

• Eg: converting to lowercase.

• But if the operation is relevant to other
types of object, make it a function, so it can
be called with all of those types of object.

• Eg: finding the length of something.

• You won’t be asked to make these decisions
in csc108. But the issue may have been
bugging you.

