Strings

Finding vowels

def num vowels(s):
‘' *Return the number of vowels 1in str s
Do not treat ‘y’ as a vowel.’''’

count = 0
for char in s:
1f char in “aAeEiIoOuU”:
count = count + 1
return count

Extra Lab Hours

® TA in the lab [:30 - 3:30 today for
assignment questions

® |ast chance for in-person help

® DB on the weekend

i
.. ‘_...:..i.:z.c.....«..:_ h

[.;.4_5._‘ iy Wil h@..@%
g%ﬁ.zs_ﬂ. .,._..._._.?:_.. A

.&._......\.L q&.ﬁ&% M._..\..‘.m_é%%g
Wi A .._”..gﬁ%
ARt
| h Wi
AN, LARnNRN If

Why the fan!?

Practice writing code

® reverse.py

® remove_spaces.py

String comparisons

You can use the comparison operators on
strings.

The comparison will be made alphabetically.

An ordering is defined even for non-
alphabetic characters. For example:

o ">«
But you only need to remember that:
® ‘9" <“p’<..<"2”
o “A"<"B"<..<"Z”

. “O” < ¢ I I < . < “9”

Indexing strings
s[i]

Allows you to extract a single character.
The first character is at index O.

A negative index means to count backwards
from the end.

Always returns a new object.

Slicing strings
s[left:right]
Allows you to extract a substring in one
step.

Always returns a new object.

The lower bound is inclusive, but the upper
bound is not.

If omitted, left defaults to 0, right to len(s).

Think of left and right as cutting the string.

O I 2 -3 -2 -]

Source: Lutz, page |34

Methods

We have seen several operators for strings.

There are not enough operators for all the
things one might want to do with strings.

Instead, Python defines these using a special
kind of function: a method.

Strings “own’”’ these methods, like a module
owns its functions. So you call methods
using the same notation as calling a function
in 2 module:

“hogwarts”.capitalize()

villain = “malfoy”

villain.capitalize()

Calling methods

® Because you provide the string using dot
notation, you don’t need to pass it as an
argument:
villain.capitalize(villain) # Redundant!
In fact, this would cause an error.

® A method may have parameters if it needs
additional information:
villain.startswith(“mal’)

Calling methods vs calling functions

® You need to know whether you are calling a
method or a function.

® Example:len is a function, so:
len(s) # Fine
s.len() # Error

® Example: lower is a method, so:
lower(s) # Error
s.lower() # Fine

Some string methods

® S.replace(old, new): return a string, same as S
but with all occurrences of old replaced by
new. Does not change S.

® S.count(substring): return the number of
times substring occurs in S.

® S.find(substring): return the index of the first
occurrence of substring in S, starting from
the left.

® S.startswith(substring): return True iff S
begins with the substring.

® And a very useful function: len(string)

Why are some things methods
and other things functions!?

® Python could have defined len (and find etc.)
as a method or a function.

® Programmers can define their own new
kinds of objects too. (We’ll learn how later.)

® The same decision has to be made for every
operation you want to define for your new
type of object object: method or function!?
There is always a choice.

So how does one decide!?

® One guideline: if the operation is only
relevant to one type of object, make it a
method defined for that type of object.

® Eg: converting to lowercase.

® But if the operation is relevant to other
types of object, make it a function, so it can
be called with all of those types of object.

® FEg:finding the length of something.

® You won’t be asked to make these decisions
in csc108. But the issue may have been

bugging you.

